Bloom and flood events on a wide continental shelf : Gliders and fixed platforms observations.

Many G., F. Bourrin, X. Durrieu de Madron, R. Verney, I. Pairaud, H. Benabdelmoumene.

In the frame of the TUCPA (Coastal Turbidity and Autonomous Platforms) project, a cruise was carried out in the vicinity of the Rhône River mouth in February 2014. Flooding conditions (Q>5000m3/s) enhanced the development of a coastal plume on the major part of shelf. Surface suspended sediment concentrations decrease from 50 mg.L⁻¹ at the mouth to 5 mg.L⁻¹ 30km offshore. An original instrumental package was used in a profiling frame deployed from a ship. A LISST type B (1.25-250µm) and a LISST-HOLO (20-2000µm) were used to characterize hydrological features and particles characteristics in a gradient from the mouth to the shelf edge. LISSTs package permitted us to determine the particle size from 1.25 to 2000 μ m. The use of holographic camera LISST-HOLO allowed us to determine nature and form of large in situ particles and aggregates. A coastal SLOCUM glider, equipped with CTD and FLNTU sensors, was deployed to characterize the Rhône river plume with a high spatial resolution. The resultant spectral slope of coastal waters determined from glider derived optical data was then compared to the slope of the Junge-type distribution determined with in-situ data. General description of particles size shows a higher proportion of large aggregates (>250µm) in the inner-shelf waters. The link between the plume and the creation of the bottom nepheloid layer was clearly visible. Offshore, large aggregates of clay sediment are present through the water column.