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The oftshore-onshore project METYSS-METYSAR aims at getting a better

understanding of the Miocene-Pliocene relationships between crustal tecton-
ics, salt tectonics, and sedimentation along the East-Sardinian margin, Tyrrhe-
nian Basin (Figure 1). In this key-area, the Tyrrhenian back-arc basin under-
went recent rifting (9-5 Ma), pro parte coeval with the Messinian Salinity
Crisis (MSC, 5.96-5.33 Ma), sea-floor spreading starting during Pliocene
times, and post-rift reactivation. Thereby, the Tyrrhenian basin and the East-

Sardinian margin are excellent candidates for studying the mechanisms of ex-
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treme lithospheric stretching and thinning, the role of pre-existing structural
fabric during and after rifting, the reactivation of a passive margin and the as-
sociated deformation and sedimentation patterns during the MSC.

The data set comprises “*
2400 km of new high-
resolution seismic pro- i
files acquired onboard ..

the R/V “Téthys II"
(METYSS 1-2009 and
3-2011) and 4 field :

trips in the Orosei area

We use the MSC seismic markers and the deformation of viscous
salt and its brittle overburden as proxies to better delineate the timing
of rifting and post-rift reactivation, and especially to quantitying verti-
cal and horizontal movements (Figure 5).

Figure 5. Idealized schematic cross section for the
western Mediterranean basin, illustrating the geo-
metric organization of the MSC seismic markers in the
offshore domain if no salt movement had occurred
(Lofi et al., 201 1a and 2011b). MSC: Messinian Salinity
Crisis, MES: Margin Erosion Surface, BES: Bottom Ero-
sion Surface, BS: Bottom Surface, TES: Top Erosion Sur-
face, TS: Top Surface, UU: Upper Unit, MU: Mobile Unit, :
LU: Lower Unit, CU: Complex Unit (Lofi et al., 2011). N
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(Figure 4).

A. MSC SEISMIC MARKERS
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tween the MES and UU on the East-Sardinia Basin. 2. “METYSS 1" seismic pruﬁle (location in black on
the middle insert) illustrating the relationships between the MES and Messinian Units (UU and MU) on
the Cornaglia Terrace. 3. Distribution map of the MES, UU and MU.

The distribution map of the Messinian Erosion Surface
(MES) and of the Messinian units (Upper and Mobile
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Units) testify for the existence of a rifted basin already
created by the time of the Messinian Salinity Crisis. It
demonstrates therefore major pre-MSC rifting over

the whole domain (Figure 7).
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Figure 1. Bathymetric map of the Mediterranean (from
GeoMapApp) showing the study area (red rectangle).
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The Tyrrhenian Sea is a Neogene back-arc basin that opened by conti- 3.
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starting possibly as early as the Langhian, and was followed by sea-floor 4y cngﬁna; 4
spreading in a few small deep basins from c. 5 Ma to present-day (Kastens o N onian
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Figure 2. A. Topographic and bathymetric map of the Mediterranean regiQn showing the BnTaTicE:
position of the main structures, thrust front, subduction zones, the main sthke—slip and W Apine bet (arrows: transport direction)  _ faults:
[ St cnttt . | normal faults. Grey lines show the successive positions of trenches taken from Kimematic oroianT s Y Symihickening R e
EE;“:;;M reconstructions (Jolivet et al., 2003). Red arrows show the directions of ductile stretcPio V.V (age) A extensional detachments strike-slip
] Meogers accuscnary et within metamorphic core complexes (Jolivet et al, 2009). B. Structural sketch map. E— oceanic crust A7 main thrust fronts =
B el o Orange arrows indicate the location of the two successive sea-floor spreading areas. The
oo ...EPE'.._...i';‘i'....“.};”ﬁ"..;..l".’ﬁ'....‘.‘;”f'.,..‘.‘.i” ..... ‘ E_F"';E s <N e S red dot corresponds to an cored oceanic crust of 4.3 My in age (Kastens et al., 1988). Faccenna et al., 2004
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S 1. SR Along the Eastern Sardinian Margin, Tortonian p.p. to Pliocene p.p. series are usually considered to be
e g e e — 7T syn-rift sediments (Sartori et al., 2001; 2004) (Figure 3). Because the Messinian Salinity Crisis took place
ot e o | during this rifting time, the Eastern Sardinian Margin is thus a key area to document the relationships between

] - c > the evaporitic deposits of the MSC and the tectonic activity associated with the rifting process.
' e IR e ¥ e S Recent deformation is generally considered to be very weak or absent along the Eastern Sardinian
e . Figure 3. Geodynamic setting of the Tyrrhenian Sea. A: Geodynamic map margin. Study of late Pleistocene marine terraces onshore shows little recent uplitt, c. + 0.04 mm/yr, restricted to
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Figure 6. Bathymetric and topographic map of the Tyrrhenian Basin and surroundings
areas. The yellow, orange, white and red lines show the location of the “METYSS" seismic
profiles illustrated in the RESULTS section. ESB: East-Sardinia Basin.

B. TILTED BLOCKS AND FAN-SHAPED SEDIMENTS
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Figure 4. Color-shaded bathymetric map of the
study area (from CIESM-Ifremer Medimap Group,
2008) showing the data set used in this work.
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reconstruction during Tortonian-Messinian times (6.5-5.3 Ma) (modified

- E from Jolivet et al., 2006). The dotted bold black line shows the location of

cross section C. B: Present-day geodynamic map showing the distribu-
tion of the oceanic domains and zones of stretched continental crust
(modified from Jolivet et al.,, 2006; Faccenna et al., 2005). Dotted grey
by lines represent the depth of the Benioff zone, top of the descending
lonian slab (Sartori et al. 2004). The dotted bold black line shows the lo-
cation of cross section D. C. and D: Schematic cross sections, respectively
for Tortonian-Messinian and Present-Day times (modified from Sartori et
al., 2001 and 2004; Spakman and Wortel, 2004; Jolivet et al., 2006).
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A. SALT TECTONICS

&7 ol [n un-confined basins, such as on Figures 9 and 10, salt tectonics is huge. There is ap-
| parently no basal slope of regional scale below salt. Moreover, no salt-related extensional
structures, such as upslope normal faults, are visible along the basement highs that could
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Figure 8. “METYSS " seismic profiles (location in orange on Fi

there is no pre-MSC post-rift sequence, UU corresponding the the first post-rift unit.

6) illustrating the tilted blocks and associated fan-shaped sediments (in blue) resulting from a pre-MSC rifting. We can
notice that rifting stops earlier westward, i.e. in the East-Sardinia Basin. Dashed pink lines correspond to post-rift pre-MSC sequences (4 and 5). Further East, on the Cornaglia Terrace (6),

in order to decipher the effects of crustal tectonics (rifting)
and thin-skinned salt tectonics (Figure 9).

attest for gravity gliding (Figure 11A). We therefore conclude that, there, the main driv-
ing process for generating salt structures (mainly diapirs) is local gravity spreading re-
lated to differential sediment loading (Figure 11B),
Moreover, salt tectonics starts very early, during the UU deposition, suggesting an
early differential sedimentary overload, even weak. It also means that diapirs are created
by extensional process (Gaullier and Vendeville, 2005).
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Figure 11. A. Gravity spreading. B. Gravity gliding. Salt is in red,
sedimentary cover is in yellow (Vendeville, 2005). C. Down-

building (Vendeville, pers. comm., from Barton, 1933). /

Orosei area (Ferranti et al., 20006). Vertical movements within that area, which probably are not related to tec-
tonic activity, have been attributed to a flexural response to the development of Plio-Quaternary volcanic bodies
(Mariani et al., 2009). Present-day seismic activity appears to be scarce and only a few significant earthquakes
(Mw > 3.5, depth < 50 km) have occurred recently in the northern part of the Eastern Sardinian margin. The Re-
gional Centroid Moment Tensor (RCMT) focal mechanisms correspond to reverse faulting, revealing a surprising
compressional stress regime in that area (Pondrelli et al., 2006; Nocquet, 2012).

o
=
=
=

£
< Saﬁtungue salt nverﬁan;&_:—_.-'
= ' orsalt massif? -
5000 " . |
WE. ~ 8.6 0 ~ 5km
Lo "y
MYS8b f W £
"""" | J L L ! ! ! 1 | ] ! ! ! 1 1 ] f ¥ ! ! ¥ 1 | f ! ! ! ! | 1 ] !
A 1000 2000 3000 4000 5000 6000
CDP number

M North

or downbuilding (Figure 11C).

Figure 10. A: Part of seismic line MYS08b (Location on Figure 6) illustrating intense salt tecton-
ics and various associated salt structures in an un-confined basin, on the Cornaglia Terrace. B:
Color shaded multibeam bathymetric close up showing salt-related sea-floor deformation
with isolated or aligned salt diapirs. The location corresponds to the white rectangle on Figure
6. Bathymetric data are modified from CIESM-IFREMR MediMap Group et al. (2008).

“ S B.POST-RIFT REACTIVATION EVIDENCE BY SALT TECTONICS

Our data show that there is no evi- - T

Cornaglia Terrace

dence for rifting processes after Late
Tortonian times. Nevertheless, wide-
spread deformation occurs during
the Pliocene and is therefore attrib-
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uted to post-rift reactivation. This post-rift tectonics is -_- mme ﬁz‘smw
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shortening translation extension

ing). Some Pliocene vertical movements have been evi-
denced by discovering localized gravity gliding of the salt
and its Late Messinian (UU) and Early Pliocene overbur-
den. To the South of the study area, crustal-scale south-
ward tilting triggered along-strike gravity gliding of salt
and cover recorded by upslope extension and downslope

shortening (Figure 12).

Figure 12. Example of late gravity gliding due to crustal vertical movement.
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